The role of Monte Carlo within a diagonalization/Monte Carlo scheme
نویسندگان
چکیده
منابع مشابه
The role of Monte Carlo within a diagonalization/Monte Carlo scheme
We review the method of stochastic error correction which eliminates the truncation error associated with any subspace diagonalization. Monte Carlo sampling is used to compute the contribution of the remaining basis vectors not included in the initial diagonalization. The method is part of a new approach to computational quantum physics which combines both diagonalization and Monte Carlo techni...
متن کاملThe Role of Diagonalization within a Diagonalization/monte Carlo Scheme
We discuss a method called quasi-sparse eigenvector diagonalization which finds the most important basis vectors of the low energy eigenstates of a quantum Hamiltonian. It can operate using any basis, either orthogonal or non-orthogonal, and any sparse Hamiltonian, either Hermitian, non-Hermitian, finite-dimensional, or infinite-dimensional. The method is part of a new computational approach wh...
متن کاملMonte Carlo Extension of Quasi-monte Carlo
This paper surveys recent research on using Monte Carlo techniques to improve quasi-Monte Carlo techniques. Randomized quasi-Monte Carlo methods provide a basis for error estimation. They have, in the special case of scrambled nets, also been observed to improve accuracy. Finally through Latin supercube sampling it is possible to use Monte Carlo methods to extend quasi-Monte Carlo methods to hi...
متن کاملMonte Carlo and quasi-Monte Carlo methods
Monte Carlo is one of the most versatile and widely used numerical methods. Its convergence rate, O(N~^), is independent of dimension, which shows Monte Carlo to be very robust but also slow. This article presents an introduction to Monte Carlo methods for integration problems, including convergence theory, sampling methods and variance reduction techniques. Accelerated convergence for Monte Ca...
متن کاملMonte Carlo and kinetic Monte Carlo methods – a tutorial
This article reviews the basic computational techniques for carrying out multiscale simulations using statistical methods, with the focus on simulations of epitaxial growth. First, the statistical-physics background behind Monte Carlo simulations is briefly described. The kinetic Monte Carlo (kMC) method is introduced as an extension of the more wide-spread thermodynamic Monte Carlo methods, an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nuclear Physics B - Proceedings Supplements
سال: 2001
ISSN: 0920-5632
DOI: 10.1016/s0920-5632(01)01011-8